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Abstract 
The paper is an attempt to generalize an approach presented in [1, 2]. It discusses how a 
“good enough” phenomenon, honed by evolution, together with inherited and learned 
experience that all live creatures use in their struggle for survival, can be used for a 
decision-making process. Proposed approach is a variation of a bounded-input bounded-
output (BIBO) method currently widely used for the system stability studies, and 
bounded-control (BC) used for the control of different systems. The paper proposes a 
method for a very fast defining a bounding surface as for the input as for the control
subspaces. Enhanced “bounded-input bounded-output bounded-control” (BIBOBC) 
approach provides also adaptability to the bounded (soft) control and allows transferring 
controlled system along a suboptimal trajectory.  
 
Key words: decision-making, bounded-input bounded-output bounded-control.  
 
Introduction 
Survivability of all live creatures, including humans, is based on two fundamental 
principles. The first principle is the ability of a creature to re-use an inherited, adopted, or 
previously learned experience (solutions) in different suddenly arising situations.  It is a 
well known “If . . . Then . . .” approach. The second principle is that instead of relying on 
the “best” solution producing the “best” result for the precisely defined situation, a 
creature uses a non-precise solution and is satisfied with an outcome that is just “good 
enough”. This flexibility allows a creature to use a limited set of solutions to cover about 
all its living situations. 
 
Let us examine the second principle on the example of a human, because it is a less 
obvious one. 
 
1. We select a “good enough” dress based on forecast, the type of activity we will be 
involved, and on our previous experience. This “good enough” dress can be used in spite 
of some variations in weather conditions and our activities. 
2. We separate apples from oranges based of our knowledge of a “good enough” range in 
which apple parameters can vary.  For example, it can be variations in the fruit shape, 
color, weight, skin texture, and so on. 
3. A physician uses a database of symptoms and a history of diseases of multiple patients 
to find a “good enough” range in which health parameters can fluctuate and indicate, with 
some probability, a disease.   
4. We recognize, with some probability, somebody’s voice if its audio frequency 
spectrum is in our subjective “good enough” limits.  

 



Some examples from psychology 
 5. Every human is unconsciously evaluating his/her well-being. This evaluation includes 
analysis of multiple directional oriented parameters, most of which have fuzzy values and 
have subjective importance. They are, for example, health related, financial; family 
related, represent living conditions, and so on. In addition, everybody has an unconscious 
fluid in time meaning to which limits these parameters can fluctuate and considered as 
“good enough.” Depending on such evaluation, a person is either satisfied with his/her 
life or not. For example, a person can say either, “I am OK,” or “I am not OK.” In the 
case of a negative answer (solution), a person becomes motivated to start an activity to 
improve the situation, i.e., to move life parameters inside of “good enough” limits. If this 
activity results in improvement of the life parameters, then it creates positive effects on a 
person’s psyche. It should be mentioned that “good enough” values are changing when 
values of evaluated parameters are changing, caused by either a person’s activity or by 
some outside factors. If life conditions are changed and a person changes his/her 
activities to maintain “a good enough” estimate of his/her life, then the person 
demonstrates his/her adaptive abilities. (This remark is outside of the scope of our 
discussion, however, we have to mention, that if all parameters have ”good enough” 
values for a long time, or if in spite of any activity person cannot improve values of the 
parameters that are important to him/her, then these situations can result in depression.) 
6. When we ask for the advice, we unconsciously expect the advice to be in some “good 
enough” limits. If advice (solution) we received is within these limits, then there is a high 
probability that we will accept it. However, when the advice (solution) is outside of these 
limits, we will likely reject it. One can continue this list of similar examples. 
 
Now, let us consider how this “good enough” approach can be transferred into a technical 
decision-making processes. First, we should define a controllable system (object, process, 
etc.) as a system that is determined by a set of input parameters, a set of output 
parameters, and some mechanism that allows mapping of valuable inputs into acceptable 
outputs. A system can be either linear or non-linear.  In the case when some system 
parameters are fuzzy, for example, color, taste, etc., they can be defined via some digital 
directional sequences.  
 
We can define a system state as a combination of system conditions, i.e., as a point into a 
multidimensional conditional input space. In the case of technical applications, since in 
the future we will use a predefined solution, instead of the term “solution”, we will use 
the term “predefined control” or just “control”. Some controls are relatively simple. For 
example, dress selection, separation of apples from oranges, recognition of somebody’s 
voice, a patient’s diagnosis, and so on. Some controls are more complicated. They 
include predefined controls (predefined solutions) as an initiator and a closed-loop 
control as an executor. For example, our reaction at a red traffic light. Some controls can 
be defined in the multidimensional control space. Controls can consist of predefined 
multi-steps with closed-loop inclusions. For example, a pilot’s actions at take-offs and 
landings. Generally speaking, about all of our adult life our activities are based on 
complex initial predefined control (predefined solution) multi-steps with closed-loop 
inclusions. 
 



For the analysis we can use a real object or either its physical or mathematical model. In 
some cases, human expert participation is necessary. In the analysis below, we will 
assume that we have a mathematical model of an object and specialized software. 
 
In the very beginning, for a particular situation (let us name it an “origin” point in the 
input space) we can find via optimization a “best” possible control that maps the “origin” 
into the “best” desired output (in the one-dimensional case see Fig. 1.) If for every 
possible input we will define the “best” control that provides us with the “best” output, 
then we finish with an infinite number of controls (in the one-dimensional case, see Fig. 
2). 
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However, as system designers, we may define limits in which system output can fluctuate 
and, in spite of these fluctuations, we can accept it as “good enough”. If we define a 
“good enough” bounded output area, then we can have two extreme situations. Namely, 
for one input we will have a set of “acceptable” controls (in the one-dimensional case, see 
Fig 3), or for one “best” control we will have an acceptable input area (in the one-
dimensional case, see Fig 4). 
It is possible to have an intermediate solution, when instead of one “best” control; we can 
find a set of controls that satisfies “good enough” bounded output conditions. However, 
the price we pay for this is a shrinking input area (in the one-dimensional case, see Fig 5). 

With a fixed “best” control, the more input 
deviates from the “origin” point, the more 
output departs from its “best” value. It 
means that with too-wide deviations of 
input a “goodness” of a found “best” 
control can deteriorate to the extent that 
departed input will be mapped outside of a 
“good enough” area, i.e., control becomes 
either useless or, in the worst case, 
counterproductive. Border points in the 
input space that the “best” control cannot 
map into a “good enough” bounded output 
are the cutoff points for this control (in the 
one-dimensional case, see Fig 4). In the 
multidimensional case, cutoff points create 
an outer surface of a subspace in the input 

space (bounded input). The “best” control is capable of mapping any point in this 
subspace into a “good enough” bounded output.  
 
Like in real life, usage of a “good enough” approach for technical applications consists of 
two phases: learning and execution. Let us start with an analysis of the learning phase in 
more detail. We will do our analysis of a generic system that is described by an input, 
output, and a control, which can all be multidimensional. It is obvious that dimensionality 
of input space, control space, and output space can be different.  
 
Learning 
1. As a first step, for the given input represented by the “origin” point in the 
multidimensional input space, we will find via optimization a “best” control that maps 
input into the “best” desired output. This multidimensional optimization process is 
complicated; however, the result of it is similar to the case shown in Fig. 1. Then, if a 
“good enough” bounded output space that includes the “best” desired output is already 
defined, we can identify via reverse mapping a bounded input subspace, which “best” 
control maps into bounded output. We will do the reverse mapping in few steps: 
2. In the very beginning, we normalize the input space at the “origin” point by defining a 
measure in some units for each parameter (dimension). For example, a unit of 
temperature can be 1/100 of a maximal considered temperature; the taste of a fruit can be 
1/100 of maximal taste units, and so on. 
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3. This normalization allows us to define a directional ray, which originates at the 
“origin” point and is going in the input space in a random direction. We can achieve this 
by multiplying each dimensional unit by corresponding to it random number. 
4. Now, we can start to move the input away from the “origin” along a randomly selected 
ray. As a result, the quality of the output will steadily diminish until we arrive at a border 
of “good enough” bounded output. The input that the “best” control maps into this border 
is a cutoff input point. Considering that a ray is one-dimensional, we can use a very fast 
one-dimensional optimization algorithm to find a cutoff point for the combination: 
direction, “best” control and a “good enough” bounded output. Coordinates of a found 
cutoff point are memorized. 
5. By using another set of random numbers, we can define a new directional ray that 
originates in the same “origin”, repeat the optimization procedure and memorize a new 
cutoff point. 
6. After we repeat step 5 a number of times, we will have a set of cutoff points that 
determine a boundary of the input subspace, any point of which can be mapped by the 
“best” control inside of a “good enough” bounded output.  
7. The cutoff’s points allow us preliminarily define by some polynomial a 
multidimensional surface that bounds the found input subspace. We consider that, with 
exception of systems designed by man (for example, the Stock Exchange), this surface is 
convex. In addition, the input subspace restrained by this surface does not contain sub-
spaces input points in which cannot be mapped by analyzed control into a “good enough” 
bounded output. We rely on these hypotheses until otherwise proven. Polynomial 
description of the surface can be done by using a “Fit” function of [3], or another fitting 
algorithm. The result of a fitting provides us with information about the polynomial and 
the value of the least square error corresponding to it. Using this polynomial allows us to 
speed up process, since now we can continue selection of testing input points that are 
very close to the bounding surface. 
 
These points can be randomly selected one-by-one and each point becomes the “origin” 

for the procedure described in steps 3 and 4.  
Each additional cutoff point is used to correct the 
polynomial and recalculate the value of a new 
least square error. We continue this procedure 
until this error is stabilized. Then we terminate it 
and consider that the polynomial is found. For the 
two-dimensional input, this procedure is 
illustrated by Fig. 6. After the polynomial is 
found, we memorize a trio: a polynomial that 
defined the bounded input subspace, the “best” 
control that maps any input of this subspace into 
a “good enough” bounded output, and the “good 
enough” bounded output itself.  
 
The approach described in steps 1-7 has been 
successfully verified on the model of a 
telecommunications network [1, 2]. This model  
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represents a system with 31-dimensional input, 43-dimensional control and one-
dimensional output. For the polynomial fitting was used a “Fit” function from [3]. 
 
8. Now, we can try to put some flexibility in the already found “best” control. To do so, 
we can, for the same “best” output and “good enough” bounded output, chose an input 
point located inside of a bounded input subspace defined by the polynomial. We will 
consider it as a new “origin” point. If we repeat steps 3 through 7, we can find another 
“best” control and another bounded input subspace that is intersecting with the previously 
found input subspace. As a result, all input points that belong to the intersection will be 
mapped into the “good enough” bounded output by either of the controls. We can repeat 
step 8 a number of times and define such control subspace that any control in it will map 
any input point belonging to the intersected input subspace into a “good enough” 
bounded output. 
9. We also can repeat steps 1-7 for the same “best” output and “good enough” bounded 
output, however now we will choose input points that are outside of intersected input 
subspace, however are in the close proximity to it. If bounded input subspaces for these 
points are intersecting with the previously found intersection of input subspaces, then we 
can accept the newly found controls as valid controls for the “good enough” bounded 
output. This will allow us expand a control subspace found in 8.  
10. We can repeat steps 8-9 as many times as our time resources allow. As a result, we 
will have an intersected input subspace all points of which are mapped into “good 
enough” bounded output by any control belonging to the found control subspace. We 
hypothesize that this control subspace is convex and try to determine its bounding surface 
by some polynomial. We define a bounded input subspace as a not empty intersection 
of input subspaces and a set of permitted controls via a bounded control subspace. 
 
Now, we can modify our memorized trio. Since any control that belongs to the bounded 
control subspace maps any input point of the intersected input subspace into the “good 
enough” bounded output, we memorize a trio as follows: bounded-input bounded-
control bounded-output solution. 
 
Steps 1-10 can be repeated for completely different states of the analyzed system (points 
in the input space). As a result, we decompose an input space on controllable subspaces 
and will have a library of solutions for different operational situations. A set of 
memorized trios allows us to execute a system control in real time. 
 
In addition, we can maintain the same “origin” point, but move the “best” output and 
“good enough” bounded output along some path. Multiple repetitions of steps 1, 3-10 
will allow transfer the analyzed system from one state to the other state along a “good 
enough” trajectory.  
 
If we maintain the same “best” output and “good enough” bounded output, but move the 
“origin” point in some direction, then the result of steps 1, 3-10 will let us equip analyzed 
systems with adaptive abilities. 
 



We can reduce an educational time by utilizing an available expertise. For example, we 
can mimic educational processes that humans and some animals use in transferring their 
own expertise to the children. In complex cases, experts can teach, for example, a robot 
to do different tasks. The experience of a test pilot can be used for the development of a 
recovery procedure in case of emergencies. 
 
Possible applications of the proposed methodology  
 
1. It becomes feasible to create fail-proof systems. To do so, we can limit system control 
by permitted (bounded) control space and, as a result, prevents some accidents. This 
approach, for example, allows prevention of airplane crashes, similar to the crash of the 
Egyptian airliner, or the Chernobyl accident. 
2. We can prepare in advance a set of flexible solutions for a robot.  The robot will 
execute these solutions depending on the required task and environmental conditions. In 
addition, a robot can adjust its reactions upon changing environmental conditions or 
output requirements.  This is a very important ability in the cases when robot works
independently without human intervention. 
3. It is possible to develop in advance a set of recovery procedures for natural disasters. 
4. It is a very well known that precise plans developed in advance become useless in real 
situations. Applying proposed methodology for the development of adaptable plans can 
be very productive. 
5. Systems (objects), for example engines, can be transferred from one state to another 
via a sub-optimal trajectory. 
6. The experience of a test pilot can be used for the development of recovery procedures 
in case of emergencies.  
7. Time for the development of systems with bounded-input bonded-control bounded-
stability-output can be drastically shortened.  
With some imagination, one can significantly expand this list of possible applications. 
 
Execution (Predefined Control) 
Execution of the proposed methodology is relatively straightforward. Control system 
monitors input conditions of the controlled system and defines to which input subspace
the current input belongs. If input belongs to the subspace defined during the learning 
process, then control corresponding to this subspace is executed. 
 
In the cases of recognition, information about object (sound) parameters is used to define 
an object via a library of solutions. A found solution gives us a probability that 
recognition is correct. 
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